Adversarially Robust Machine Learning for Critical Applications

By: Ziad Ali

Outline

- Introduction
- Applications of Attacks
- Defenses & their limitations
- Conclusion & Future work

Deep Neural Networks: Feed Forward Deep neural network

Adapted from Nielsen (2015)

Convolutional Neural Network LeNet 5

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proc. IEEE 86(11): 2278–2324, 1998.

Why Deep Learning Applications are Critical?

- Oil & Gas industry for predicting failure
- Medicine for diagnosis of diseases
- Self-driving cars
- Speech Recognition
- DL based malware detection

Datasets: MNIST & CIFAR-10

0 5 10 15 20 25

- MNIST 28x28
- 60000 Training Images
- 10000 Testing Images

airplane	
automob)
bird	
cat	
deer	
dog	
frog	
horse	
ship	
truck	

	1	-X-		X	*	-	2	-4-		-
le					-	No.			-	
	S.	5	2			-	V		2	~
		Contraction of the second	-	100		Ťe.		di.	C.	
	13	4.8	×.	RA		Y	Y	1	-	5
	376	6	-		1	Ser.		R.S.	12	The second
	-	1-44			290		and a	30	alle.	5
	- Mar	- The	190	2	5	HC TAB		1	143	N.
	-	Card and	-	-	124	-	-	12	and in	-
	ANT IN COLUMN	La	-			<u> </u>	-	and the	-	den

- CIFAR-10 32x32x3
- 50000 Training Images
- 10000 Testing Images

https://www.cs.toronto.edu/~kriz/cifar.html

Attacks on ML:

Adversarial ML: Evasion Attacks

 $\begin{array}{c} x + \\ \epsilon \text{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y})) \\ \text{``gibbon''} \\ 99.3 \% \text{ confidence} \end{array}$

Adapted from Goodfellow (2015)

Adversarial ML: Threat Model

- White-box Attacks: Full access (weights, dataset, learning algorithm)
- Grey-box Attacks: Partial access
- Black-box Attacks: No access
- Adaptive Attacks: attacks targeted to a specific defense

Threat Model: Adversary's Goals

- + Confidence Reduction (99% cat to 12% cat)
- Misclassification (cat to any other label)
- Targeted Misclassification (cat to dog)

Threat Model: Adversarial Robustness Metrics

- Classification Error: Number of test samples misclassified
- Robust Classification Error (R): Number of perturbed test samples misclassified
- Robust Accuracy (adversarial robustness): 1-R

Definition 2 (Classification error). Let $\mathcal{P} : \mathbb{R}^d \times \{\pm 1\} \to \mathbb{R}$ be a distribution. Then the classification error β of a classifier $f : \mathbb{R}^d \to \{\pm 1\}$ is defined as $\beta = \mathbb{P}_{(x,y)\sim \mathcal{P}}[f(x) \neq y]$.

Next, we define our main quantity of interest, which is an adversarially robust counterpart of the above classification error. Instead of counting misclassifications under the data distribution, we allow a bounded worst-case perturbation before passing the perturbed sample to the classifier.

Definition 3 (Robust classification error). Let $\mathcal{P} : \mathbb{R}^d \times \{\pm 1\} \to \mathbb{R}$ be a distribution and let $\mathcal{B} : \mathbb{R}^d \to \mathscr{P}(\mathbb{R}^d)$ be a perturbation set.² Then the \mathcal{B} -robust classification error β of a classifier $f : \mathbb{R}^d \to \{\pm 1\}$ is defined as $\beta = \mathbb{P}_{(x,y)\sim \mathcal{P}}[\exists x' \in \mathcal{B}(x) : f(x') \neq y].$

Since ℓ_{∞} -perturbations have recently received a significant amount of attention, we focus on robustness to ℓ_{∞} -bounded adversaries in our work. For this purpose, we define the perturbation set $\mathcal{B}_{\infty}^{\varepsilon}(x) = \{x' \in \mathbb{R}^d \mid ||x' - x||_{\infty} \leq \varepsilon\}$. To simplify notation, we refer to robustness with respect to this set also as $\ell_{\infty}^{\varepsilon}$ -robustness. As we remark in the discussion section, understanding generalization for other measures of robustness (ℓ_2 , rotatations, etc.) is an important direction for future work.

Adversarially Robust Generalization Requires More Data (Schmidt et. al 2018)

Attacks: Black-box Attack in Physical World

Adversarial Examples in Physical World (Kurakin et. Al 2015)

Attacks: Segmentation Task

Adversarial Attacks and Defenses in Deep Learning (Ren et. al)

Audio Adversarial Examples: Targeted Attacks on Speech-to-Text (Carlini et. al)

Adversarial Defenses:

- Certified Defenses: give a guarantee of robustness
- Input Pre-processing Defenses: apply L
 transformations to input

- Detection Defenses: detect adversarial behaviour
- Adversarial Retraining: retrain the Adapted from AprilPyone (2020) model on adversarial samples

Defenses: Input Transformations

- Image Cropping and Rescaling
- Bit-Depth Reduction
- JPEG Compression
- TV minimization
- Image Quilting
- Broken with EOT and BPDA attack by (Athalye et. Al)
- Accuracy reduced to 0%!!!

COUNTERING ADVERSARIAL IMAGES USING INPUT TRANSFORMATIONS (Guo et. al)

Defense: Key-Based Input Transformation

Block-wise Image Transformation with Secret Key for Adversarially Robust Defense (AprilPyone et. al)

Defenses: Detection

Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks (2017)

- He et. al show feature squeezing is vulnerable to adaptive attacks
- Nicholas Carlini bypassed 10 different detection methods to show they are not effective (Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods (2019))

Defenses: Adversarial Retraining

- Proposed by Goodfellow et. al (2015) using FGSM
- + ASR fell from 89.4% to 17.8% for FGSM
- Unsuccessful against iterative attacks
- Enhanced by Madry et. al (2017) using PGD
- Defended against majority of strongest attacks (89.3% MNIST, 45.8% CIFAR-10)
- * Natural accuracy drops from 95.2% to 87.3%

Adversarial Retraining: Surrogate Losses

• Logit Pairing

• Trades

• MART

Defense Method	Loss Function
Standard	$\operatorname{CE}(\mathbf{p}(\hat{\mathbf{x}}', \boldsymbol{ heta}), y)$
ALP	$ ext{CE}(\mathbf{p}(\hat{\mathbf{x}}', oldsymbol{ heta}), y) + \lambda \cdot \ \mathbf{p}(\hat{\mathbf{x}}', oldsymbol{ heta}) - \mathbf{p}(\mathbf{x}, oldsymbol{ heta})\ _2^2$
CLP	$ ext{CE}(extbf{p}(extbf{x},oldsymbol{ heta}),y) + \lambda \cdot \ extbf{p}(\hat{ extbf{x}}',oldsymbol{ heta}) - extbf{p}(extbf{x},oldsymbol{ heta})\ _2^2$
TRADES	$\operatorname{CE}(\mathbf{p}(\mathbf{x}, \boldsymbol{\theta}), y) + \lambda \cdot \operatorname{KL}(\mathbf{p}(\mathbf{x}, \boldsymbol{\theta}) \mathbf{p}(\hat{\mathbf{x}}', \boldsymbol{\theta}))$
MMA	$CE(\mathbf{p}(\hat{\mathbf{x}}', \boldsymbol{\theta}), y) \cdot \mathbb{1}(h_{\boldsymbol{\theta}}(\mathbf{x}) = y) + CE(\mathbf{p}(\mathbf{x}, \boldsymbol{\theta}), y) \cdot \mathbb{1}(h_{\boldsymbol{\theta}}(\mathbf{x}) \neq y)$
MART	$\text{BCE}(\mathbf{p}(\hat{\mathbf{x}}', \boldsymbol{\theta}), y) + \lambda \cdot \text{KL}(\mathbf{p}(\mathbf{x}, \boldsymbol{\theta}) \mathbf{p}(\hat{\mathbf{x}}', \boldsymbol{\theta})) \cdot (1 - \mathbf{p}_y(\mathbf{x}, \boldsymbol{\theta}))$

		MN	IST		CIFAR-10					
Defense	Natural	FGSM	PGD^{20}	CW_{∞}	Natural	FGSM	PGD^{20}	CW_∞		
Standard	99.11	97.17	94.62	94.25	84.44	61.89	47.55	45.98		
MMA	98.92	97.25	95.25	94.77	84.76	62.08	48.33	45.77		
Dynamic	98.96	97.34	95.27	94.85	83.33	62.47	49.40	46.94		
TRADES	99.25	96.67	94.58	94.03	82.90	62.82	50.25	48.29		
MART	98.74	97.8 7	96.48	96.10	83.07	65.65	55.57	54.87		

IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING

MISCLASSIFIED EXAMPLES (Wang et. al)

Defenses: Robust generalization requires more data

- MNIST achieves >90% robustness
- Owing to learning thresholding filters
- CIFAR-10 achieves >45% robustness
- Gap between standard & robust generalization higher on CIFAR-10
- Owing to high dimensions

Adversarially Robust Generalization Requires More Data (Schmidt et. al)

Defenses: Data Augmentation & Unlabeled Extra Data

- + Carmon et. al use ${\bf 500k}$ unlabeled extra data
- Using extra data jumps robustness to **59**%
- Rebuffi et. Al use data augmentations (CutMix)
- Achieving 66.56% robustness with 90.51% standard accuracy

Defenses: Effect of architecture on robustness

Defenses: Effect of architecture on robustness

	Rob	oust Accuracy	(%)	Nat	ural Accuracy	(%)	Perturbation Stability (%)					
λ	width-1 width-5 width-10		width-10	width-1	width-5	width-10	width-1	width-5	width-10			
TRADES Zhang et al. (2019)												
6	$47.81 \pm .09$ $54.45 \pm .16$ $54.18 \pm .39$			$ $ 76.26 \pm .10	$\textbf{84.44} {\pm} \textbf{.06}$	$\textbf{84.90} {\pm} \textbf{.80}$	$69.33 {\pm}.05$	$68.27{\pm}.22$	$67.25{\pm}.39$			
9	$\textbf{48.01} {\pm} \textbf{.06}$	$55.34 {\pm}.17$	$55.29{\pm}.45$	$73.78 \pm .30$	$82.77 {\pm} .07$	$84.13{\pm}.28$	$71.92 \pm .33$	$70.66{\pm}.26$	$69.08 {\pm} .80$			
12	$47.87{\pm}.06$	$\textbf{55.61}{\pm}\textbf{.04}$	$55.98 {\pm}.13$	$72.29 \pm .25$	$81.59{\pm}.20$	$.59 \pm .20$ $83.59 \pm .62$	$73.33 \pm .16$	$72.00 \pm .20$	$70.18 {\pm} .67$			
15	$47.15 {\pm}.13$	$55.49 {\pm} .15$	$55.96{\pm}.09$	$70.98 \pm .24$	$80.69{\pm}.08$	$82.81 {\pm} .19$	$73.79 \pm .27$	$72.87 {\pm}.03$	$70.87 {\pm}.23$			
18	$47.02 \pm .13$	$55.43 {\pm}.12$	$\textbf{56.43} {\pm} \textbf{.17}$	$70.13 \pm .06$	$79.97 {\pm} .12$	$82.21 \pm .21$	$74.63 \pm .11$	$73.77 {\pm} .13$	$72.04 {\pm} .30$			
21	$46.26{\pm}.19$	$55.31{\pm}.20$	$56.07{\pm}.21$	$68.95{\pm}.38$	$68.95 \pm .38$ $79.25 \pm .23$ $81.74 \pm .12$		$75.17 {\pm}.28$	$\textbf{74.15} {\pm} \textbf{.38}$	$\textbf{72.11}{\pm}\textbf{.12}$			
Adversarial Training Madry et al. (2018)												
1.00	$47.99 {\pm} .16$	$50.87 {\pm}.42$	$50.12 \pm .13$	$77.30{\pm}.01$	$\textbf{85.82}{\pm}.\textbf{01}$	$\textbf{85.62}{\pm}.\textbf{81}$	$66.48 \pm .24$	$62.23 {\pm}.42$	$61.62 {\pm}.46$			
1.25	$\textbf{49.24}{\pm}\textbf{.12}$	$53.10{\pm}.09$	$51.97 {\pm}.46$	$74.04 \pm .47$	$84.73 {\pm}.22$	$86.25{\pm}.12$	$70.34 \pm .54$	$65.24{\pm}.08$	$62.94{\pm}.35$			
1.50	$49.11{\pm}.03$	$54.15{\pm}.03$	$53.25 \pm .52$	$72.16 \pm .25$	$84.35{\pm}.19$	$85.50{\pm}.57$	$72.10 \pm .11$	$66.65{\pm}.06$	$64.51{\pm}.72$			
1.75	$48.32{\pm}.63$	$\textbf{54.36} {\pm} \textbf{.14}$	$53.65 {\pm} .80$	$70.66 \pm .46$	$83.95 {\pm} .30$	$85.52{\pm}.24$	$72.43 \pm .40$	$67.31{\pm}.03$	$65.67{\pm}.10$			
2.00	$47.44{\pm}.06$	$54.10{\pm}.15$	$\textbf{55.78} {\pm} \textbf{.22}$	$69.67 {\pm}.09$	$83.49{\pm}.06$	$85.41{\pm}.13$	$72.73 {\pm}.04$	$67.53{\pm}.01$	$\textbf{65.71} {\pm} \textbf{.15}$			

Wide residual networks. (Zagoruyko et. al 2017)

Defenses: RobustBench (CIFAR-10)

K	ORU	STDENCH		Lead	lerboards	Faper	rAQ CC	minbule	Model	200 🔀
		Le	aderboard:	CIFAR-10,	$\ell_\infty=8/25$	5, untarge	ted attack			
Sho	w 15	▼ entries						Search:	Papers, arc	hitectures, ve:
	Rank	Method	<pre>\$tandard accuracy</pre>	AutoAttack robust 🍦 accuracy	Best known robust accuracy	AA eval potential unreliab	. Extra ly ∳ data Le	Architect	ture 🍦	Venue 🍦
	1	Fixing Data Augmentation to Improve Adversarial Robustness 66,56% robust accuracy is due to the original evaluation (AutoAttack + MultiTargeted)	92.23%	66.58%	66.56%	×		WideResNe	t-70-16	arXiv, Mar 2021
	2	Improving Robustness using Generated Data It uses additional 100M synthetic images in training. 66.10% robust accuracy is due to the original evaluation (AutoAttack + MultiTargeted)	88.74%	66.11%	66.10%	×	×	WideResNe	t-70-16 N	eurIPS 2021
	3	Uncovering the Limits of Adversarial Training against Norm- Bounded Adversarial Examples 65.87% robust accuracy is due to the original analysism (AutoAttack + MultiTemated)	91.10%	65.88%	65.87%	×		WideResNe	t-70-16	arXiv, Oct 2020

https://robustbench.github.io/#leaderboard

Defenses: RobustBench (ImageNet)

RobustBench

Leaderboards

s Paper

FAQ

Contribute Mo

Model Zoo 💋

Leaderboard: ImageNet, $\ell_{\infty} = 4/255$, untargeted attack

Show	15	₹	entries							Sea	rch:	apers,	architectures	, ve
	Rank		Method	Stand accur	ard acy	AutoAttack robust accuracy	Best known robust accuracy	AA eval. potentially unreliable	Extra data	🔶 Archi	itecture	•	Venue	
	1		Do Adversarially Robust ImageNet Models Transfer Better?	68.	16%	38.14%	38.14%	×	×	WideR	esNet-50)-2	NeurIPS 2020	
	2		Do Adversarially Robust ImageNet Models Transfer Better?	64.	92%	34.96%	34.96%	×	×	Res	sNet-50		NeurIPS 2020	
	3		Robustness library	62.	56%	29.22%	29.22%	×	×	Res	sNet-50		GitHub, Oct 2019	
	4		Fast is better than free: Revisiting adversarial training Focuses on fast adversarial training.	55.	52%	26.24%	26.24%	×	×	Res	sNet-50		ICLR 2020	

Conclusion

- A lot of room for improvement
- Possible future work
- Our current work evaluates secret key based defeses and tries to improve robustness by making changes to the architecture